Enhancing CO−Water Mass Transfer by Functionalized MCM41 Nanoparticles
نویسندگان
چکیده
Organic groups are grafted to 250-nm-diameter MCM41 nanoparticles with a spherical morphology to enhance the CO−water volumetric mass-transfer coefficient (kLa) for synthesis gas fermentation. The results indicate that (i) 250-nm MCM41 nanoparticles show a higherkLa value than large silica particles (1.4 and 7 μm), (ii) surface hydroxyl groups on MCM41 nanoparticles play an important role in mass-transfer enhancement, (iii) organic groups grafted to MCM41 modify the mass-transfer enhancement, and (iv) mercaptan groups grafted to MCM41 show the most mass-transfer enhancement of 1.9 times that of no nanoparticle addition. The CO−water mass-transfer enhancement depends on the interaction between the nanoparticles and the CO molecules, which is influenced by the hydrophobicity of the nanoparticles and the functional group on the nanoparticles. Disciplines Complex Fluids | Mechanical Engineering | Thermodynamics Comments Reprinted with permission from Industrial & Chemistry Engineering Research 47 (2008): 7881–7887, doi:10.1021/ie800238w. Copyright 2008 American Chemical Society. This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/me_pubs/14 Enhancing CO-Water Mass Transfer by Functionalized MCM41 Nanoparticles Haiyang Zhu, Brent H. Shanks, and Theodore J. Heindel* Department of Mechanical Engineering, 2025 Black Engineering Building, and Department of Chemical and Biological Engineering, 2114 Sweeney Hall, Iowa State UniVersity, Ames, Iowa 50011 Organic groups are grafted to ∼250-nm-diameter MCM41 nanoparticles with a spherical morphology to enhance the CO-water volumetric mass-transfer coefficient (kLa) for synthesis gas fermentation. The results indicate that (i) ∼250-nm MCM41 nanoparticles show a higher kLa value than large silica particles (1.4 and 7 μm), (ii) surface hydroxyl groups on MCM41 nanoparticles play an important role in mass-transfer enhancement, (iii) organic groups grafted to MCM41 modify the mass-transfer enhancement, and (iv) mercaptan groups grafted to MCM41 show the most mass-transfer enhancement of ∼1.9 times that of no nanoparticle addition. The CO-water mass-transfer enhancement depends on the interaction between the nanoparticles and the CO molecules, which is influenced by the hydrophobicity of the nanoparticles and the functional group on the nanoparticles.
منابع مشابه
Effect of electrolytes on CO-water mass transfer
The influence of various electrolytes such as sulfate, nitrate, and chloride on CO-water mass transfer was investigated in this study. The results indicate that the enhancement in the CO-water volumetric masstransfer coefficient ranged from 1.5 to 4.7 times that of a baseline system without electrolytes, depending on electrolyte type and concentration. For those electrolytes with the same anion...
متن کاملHigh Performance Nanocomposite Cation Exchange Membrane: Effects of Functionalized Silica-Coated Magnetic Nanoparticles
Nanocomposite cation exchange membranes (CEMs) were prepared by adding various amounts of functionalized silica-coated magnetite nanoparticles to the sulfonated polyethersulfone (sPES) polymeric matrix. The particles were synthesized first by the co-precipitation method (M0). Different surface modifications were then carried out on them by grafting three functional groups of mercaptopropyl, pro...
متن کاملLattice Boltzmann method for MHD natural convection of CuO/water nanofluid in a wavy-walled cavity with sinusoidal temperature distribution
In this paper, natural convection heat transfer of CuO-water Nanofluid within a wavy-walled cavity and subjected to a uniform magnetic field is examined by adopting the lattice Boltzmann model. The left wavy wall is heated sinusoidal, while the right flat wall is maintained at the constant temperature of Tc. The top and the bottom horizontal walls are smooth and insulated against heat and mass....
متن کاملHeat Transfer Performance of Functionalized Graphene Nanoplatelet Aqueous Nanofluids
The low thermal conductivity of fluids used in many industrial applications is one of the primary limitations in the development of more efficient heat transfer systems. A promising solution to this problem is the suspension of nanoparticles with high thermal conductivities in a base fluid. These suspensions, known as nanofluids, have great potential for enhancing heat transfer. The heat transf...
متن کاملModifying functionalized-carbon-nanotube capacity to enhance water-vapor adsorption capacity from nitrogen gas
The primary objective of this paper is to enhance the water-vapor-adsorption capacity of multiwall-carbon-nanotube (MWCNT) from nitrogen gas by grafting sulfonic acid groups and doping palladium nanoparticles into the adsorbent. MWCNT has been selected to be modified because of having homogeneous adsorption energy compared to silica gel. As a result, it is capable of creating isotherm having sh...
متن کامل